Моделирование и распространение световых пучков Лагерра–Гаусса

Обложка

Цитировать

Полный текст

Аннотация

В данной работе численно исследуется распространение классических пучков Лагерра–Гаусса (ЛГ) и трёхиндексных пучков ЛГ. Моды Лагерра–Гаусса представляют собой моды высшего порядка в отличие от Гауссова пучка, который является основной модой и имеет более простой профиль интенсивности. Мы получаем картину распределения интенсивности и фазы световых пучков, чтобы визуализировать их структуру при распространении. Распространение в свободном пространстве смоделировано с помощью преобразования Френеля, а изображение входного поля в задней фокальной плоскости линзы смоделировано с помощью преобразования Фурье. Результаты доказали, что стандартные пучки ЛГ сохраняют свою структуру при распространении с точностью до масштаба. Также была исследована структура трёхиндексных пучков.

Полный текст

The transverse structure of light is recognized as an important discovery that is widely used for encoding information onto photons [1], to enhance high-speed and long-distance communications, in quantum information technology, etc. Laguerre–Gaussian (LG) mode is a laser vortex beam with rotationally-symmetric intensity form [2]. LG beams have found a use for free-space and fiber-optic communications [3-4], sharp focusing [5], quantum optics and studies of their applicability in various fields are still ongoing. Propagation of classical LG modes is well studied nowadays [6], but relevance of LG beams encourages researches to study anomalous LG beams, like three-index LG beams.

 

Theoretical basics

The standard LG modes are complete set of exact and orthogonal solutions of the free-space paraxial wave equation in cylindrical coordinates . The complex amplitude of these fields in case of  or input field may be expressed as follows:

where  is the waist radius;  are integer orders;  is generalized Laguerre polynomial.

LG modes are paraxial fields with a vortex phase structure , where  is the azimuthal angle and  is azimuthal mode index, . They can also be described by second (radial) mode index . It’s known that such modes carry well-defined orbital-angular momentum (OAM) [7]. The OAM modes have been applied in both quantum and optical communication systems [8]. 

By modeling propagation of beams, we can find the intensity and the phase distribution of them. The intensity distribution is squared absolute values of the complex amplitude and the phase distribution can be determined as taking the angle of it in the complex plane. The results of the modeling can be seen in fig.1, table 1.

Fig. 1. The intensity and the phase distribution of the LG beam ():  mm, .

 

The standard LG modes have a vortex phase structure . But there are LG beams, that can be described with 3 indices: , and , where the third index  ¹ is associated with the different vortex phase order. The complex amplitude of these fields in the input plane () is given by

where  is the waist radius;  are integers,;  is generalized Laguerre polynomial.

 

Table 1

The intensity and the phase distribution of the three-index LG beam, ,  mm

 

In table 1 we can see the differences in the phase distribution in comparison to fig. 1. These changes are caused by adding new index, which now represents the number of times that the phase changes it value from  to  in each circle.

Results of the modeling

The propagation of LG beams can be modeled using Fourier transform and Fresnel transform. The Fourier transform allows to describe light passing through a lens. It visualizes the intensity distribution of the input field in the rear focal plane of the lens. The Fresnel transform is a paraxial diffraction integral, enables to calculate the intensity and the phase distribution of the beam at the various distances . The results are given by (fig. 2-3), (table 2-3).

 

Fig. 2. The intensity and the phase distribution of the LG beam after passing through a lens ():  mm.

 

Fig. 3. Propagation of the LG mode in free space ():  mm,  mm. The intensity and the phase distribution.

 

Table 2

The intensity and the phase distribution of the three-index LG beam after passing through a lens,  mm

 

Table 3

Propagation of the LG mode in free space,  mm. The intensity and the phase distribution.

We can see that intensity distribution of the three-index beams in the rear focal plane of the lens and after propagation in free-space has changed comparing to table 1. That results show that adding the third index for describing classical LG modes leads to changes in beam structure during propagation. So, this modification breaks modal properties, but expands the variety of generated distributions.    

Conclusion

In the present paper we have studied the standard and three-index LG beams and their basic features. We have modeled the propagation of these beams in free space and passing through a lens using Fresnel transform and Fourier transform. It has been shown that classical LG modes preserve their structure up to a scale during propagation. Three-index LG beams act differently, they lose their modal properties, but provide a greater variety of distributions.

×

Об авторах

Марина Колебанова

Автор, ответственный за переписку.
Email: infrocl@yandex.ru
Россия

Наталья Александровна Слобожанина

Email: slobogeanina@mail.ru

Список литературы

  1. Quantum information transfer from spin to orbital angular momentum of photons / E. Nagali, F. Sciarrino, F. D. Martini [et al.] // Phys. Rev. Lett. 2009. 103.013601
  2. Realization of a scalable Laguerre-Gaussian mode sorter based on a robust radial mode sorter / D. Fu, Y. Zhou, R. Qi [et al.] // Optics Express. 2018. Vol. 26, Iss. 25. P. 33057-33065.
  3. Free-space information transfer using light beams carrying orbital angular momentum / G. Gibson, J. Courtial, M. Padgett, [et al.] // Optics Express. 2004. Vol. 12. P. 5448–5456.
  4. Propagation of laser vortex beams in a parabolic optical fiber / S. N. Khonina, A. S. Striletz, A. A. Kovalev [et al.] // Proceedings of SPIE. 2010. Vol. 7523. P. 75230B-1-12.
  5. Savelyev D. A., Khonina S. N. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams // Computer Optics. 2015. Vol. 39(5). P. 654-662.
  6. Kotlyar V. V., Khonina S. N., Wang Ya. Operator description of paraxial light fields // Computer Optics. 2001. Vol. 21. P. 45-52.
  7. Orbital Angular Momentum of Light and the Transformation of Laguerre–Gaussian Laser Modes / L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw [et al.] // Phys. Rev. 1992. Vol. 45. P. 8185–8189.
  8. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing / J. Wang, J.-Y. Yang, I. M. Fazal [et al.] // Nat. Photonics. 2012. Vol. 6. P. 488–496.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Вестник молодых учёных и специалистов Самарского университета, 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-ShareAlike 4.0 International License.

Вестник молодых учёных и специалистов Самарского университета

Сетевое издание, журнал

ISSN 2782-2982 (Online)

Учредитель и издатель сетевого издания, журнала: федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет), Московское шоссе, 34, 443086,  Самарская область, г. Самара, Российская Федерация.

Сетевое издание зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, регистрационный номер ЭЛ № ФС 77-86495 от 29.12.2023

Выписка из реестра зарегистрированных СМИ

Устав сетевого издания

Главный редактор: Андрей Брониславович Прокофьев, доктор технических наук, доцент, заведующий кафедрой теории двигателей летательных аппаратов

2 выпуска в год

0+. Цена свободная. 

Адрес редакции: 443011, Самарская область, г. Самара, ул. Академика Павлова, д. 1, Совет молодых учёных и специалистов, каб. 513 корпуса 22 а.

Адрес для корреспонденции: 443086, Самарская область, г. Самара, Московское шоссе, 34, Самарский национальный исследовательский университет (Самарский университет), 22а корпус, каб. 513.

Тел: (846) 334-54-43

e-mail: smuissu@ssau.ru

Доменное имя: VMUIS.RU (справка о принадлежности домена)электронный адрес в сети Интернет:  https://vmuis.ru/smus.

Прежнее свидетельство – периодическое печатное издание, журнал «Вестник молодых учёных и специалистов Самарского университета», зарегистрировано Управлением Федеральной службы по надзору в сфере связи, информационных технологий и массовых коммуникаций по Самарской области, регистрационный номер серии ПИ № ТУ63-00921 от 27 декабря 2017 г.

© Самарский университет

 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах