Расчет интерференционного покрытия глухого зеркала для DPSS лазера

Обложка

Цитировать

Полный текст

Аннотация

В данной статье дается базовое представление о работе лазеров, их общая классификация, а также обсуждается проведенный расчет интерференционного покрытия для двух сторон глухого зеркала импульсного твердотельного DPSS лазера с пассивной модуляцией добротности и внерезонаторным удвоением частоты. Показано, что полученные расчеты удовлетворяют требованиям, предъявляемым к покрытиям оптических элементов. Рассчитанные интерференционные покрытия обеспечивают необходимую долю отражения и пропускания излучения на заданных длинах волн. Необходимость подобных расчетов заключается в том, что для осуществления требуемой степени пропускания на конкретных длинах волн наносятся конкретные интерференционные покрытия. Качественный расчет подразумевает возможность изготовления оптических элементов с подобным покрытием, то есть количество слоев не должно быть слишком большим, а их толщина – слишком маленькой.

Полный текст

Lasers or optical quantum generators are sources of coherent radiation with a number of unique properties. When the first working laser was reported in 1960, it was described as "a solution looking for a problem" [1]. One of the most important properties of laser radiation is an extremely high degree of its monochromaticity, which is unattainable from natural sources. Lasers are widely used in materials processing technology, medicine, optical navigation, communication and location systems, in precision interference experiments, chemistry, everyday life, etc.

Optical quantum generators are classified according to many criteria:

- according to the operating mode: pulsed and continuously operated lasers;

- according to the active medium: liquid; gas; solid state; free electron lasers;

- according to the method of a laser active medium excitation (pumping): gas-discharge; gas-dynamic; diode; chemical; optically pumped; nuclear pumped; lasers with electron beam pumping (special types of semiconductor and gas lasers).

In order to understand the basics of laser operation, it is necessary to study more carefully the processes of photon absorption and emission. An atom can be in different energy states with energies E1, E2, etc. A stable state in which an atom can remain indefinitely in the absence of external disturbances is the state with the lowest energy. This state is called the ground state. All other states are unstable. An excited atom can remain in these states only for a very short time about 10–8 s, then it spontaneously passes into one of the lower states, emitting a quantum of light. Such radiation is called spontaneous emission. At some energy states, an atom can remain much longer – about 10–3 s. Such atom energy states are called metastable states [2].

An atom jump to a higher energy state can occur during resonant absorption of a photon,   the energy of which is equal to the difference in the atom energy in the final and initial states. Atom jumps are not necessarily related to the photon absorption or emission. In 1916, A. Einstein predicted that the electron transition from the upper energy state to the lower one can occur under the external electromagnetic field influence, the frequency of which is equal to the natural transition frequency. The obtained radiation is called stimulated or induced emission. As a result of the interaction of an excited atom and a photon, an atom emits another photon of the same frequency, propagating in the same direction. That is, an atom emits an electromagnetic wave that has the same frequency, phase, polarization, and direction of propagation as the original wave. In the stimulated photon emission, the amplitude of the propagating wave in the medium increases. Due to the interaction of an excited atom with a photon, the  frequency of whick is equal to the transition frequency, two completely identical photons appear. It is the induced emission of radiation that is the physical basis for lasers operation. [2].

In order to amplify the wave passing through the layer of material, it is necessary to create a population inversion of states. Such a medium is thermodynamically nonequilibrium. The medium in which the population inversion of states is created is called active medium. It can be used as a resonant light signal amplifier. To start a light generation, it is necessary to use feed-back. To do this, the active medium must be placed between two mirrors that reflect light strictly back so that it passes through the active medium many times, causing an avalanche-type process of induced coherent photons emission. In this case, the population inversion of states must be maintained in the medium. This process is called pumping.

Under certain conditions, the start of an avalanche-type process in such a system can be caused by a random spontaneous act in which radiation directed along the system axis emerges. After some time, a steady-state regime occurs in such a system. This is the laser. Laser beam is coupled out through one of the mirrors, which has partial transparency [3]. To provide the necessary percent of reflection and transmission of mirrors between which the active medium is located, special interference coatings are applied.

The aim of this work is to calculate the antireflective and reflective interference coating for wavelengths of 808 nm and 1064 nm for two sides of a DPSS pulsed solid-state laser with a passive Q-switching and extracavity frequency doubling cavity end mirror.

 

  1. The operation principle of DPSS pulsed solid-state laser with a passive Q-switching and extracavity frequency doubling

A Diode-pumped solid-state laser (DPSS) is a type of solid-state laser in which a laser diode (LD) is used for pumping [4]. DPSS lasers are highly efficient and compact in comparison with gas and other solid state lasers. In recent years, DPSS lasers have gained favor as radiation sources in laser pointers of green, yellow, and some other colors. In a typical DPSS laser scheme shown in fig. 1, the pump source is a powerful infrared LD (from 100 mW to several hundred watts) with a wavelength of 808 nm. This LD is optically coupled by means of transfer optics with the active medium of a solid-state laser. Let us assume that the active medium emits at a wavelength of 1064 nm. If a nonlinear optical crystal (KTiOPO4, KTP) is attached to its output, then the initial radiation frequency doubles in it and the output beam has a wavelength of 532 nm. This corresponds to the green color of visible radiation. The efficiency of such a system is approximately 20%. The main advantage of DPSS lasers in comparison with LD is the high radiation quality, both in terms of monochromaticity and in terms of focusing and beam divergence. DPSS lasers have a narrower wavelength range (less than 1 nm in comparison with 5–20 nm in case of diode lasers) and much smaller beam divergence [4].

 

Fig. 1. Scheme of DPSS pulsed solid-state laser with a passive Q-switching and extracavity frequency doubling. 1 – pump radiation source, 2 – condenser, 3 – cavity end mirror, 4 – Nd: YAG crystal, 5 – passive Cr:YAG modulator, 6 – output mirror, 7 – KTP nonlinear crystal

 

  1. Optical cavity

An optical cavity or resonator is a combination of several reflective optical elements, organizing an open resonator forming a standing light wave. Optical resonators provide positive feedback to ensure multiple pass of laser radiation through the active medium, which results in light flux amplification [3].

Light is reflected many times, thereby forming standing waves with certain resonant frequencies. In general, optical cavities formed by two reflective elements are used. Resonators with spherical mirrors are most commonly used. The resonator geometric parameters are selected based on the requirements of stability and on such factors as, for example, the formation of the smallest beam waist.

The resonator is called unstable when an arbitrary beam, successively reflected from each of the mirrors, is removed at an unlimited distance from the cavity axis. Conversely, a resonator in which a beam remains within a limited region is called stable.

 To ensure stability, the ratio of the mirrors curvature radii R1, R2 and the cavity optical length L must satisfy the following formula [3]:

 

01LR11LR21

To ensure the necessary percent of reflection and transmission of mirrors in the laser resonator, special optical coatings in a form of thin films, are applied to these optical elements.

Thin films are thin layers of material, the thickness of which ranges from fractions of a nanometer (monoatomic layer) to several microns. They differ fundamentally from thick films by  methods of deposition on a substrate. Solid thin films deposited on the surface of various objects are widely used.

Conditions and research methods

The MCalc software was used to calculate the antireflection and reflection interference coatings for the cavity end mirror. Titanium oxide was chosen as the coating material with a higher refractive index, and silicon oxide was chosen as the coating material with a lower refractive index. The number of layers was selected by reasons of the possibility of producing such a coating in practice, provided that the necessary percent of radiation transmission at specific wavelengths (808 nm and 1064 nm) was provided.

Results and discussion

Fig. 2 shows a sketch of a cavity end mirror for which an interference coating was calculated. Coating was calculated for two sides of a cavity end mirror.

 

Fig. 2. Cavity end mirror

 

For side A, it was necessary to obtain such a thin film that would allow radiation with a pump wavelength of 808 nm to completely pass into the resonator. As a result of the calculation, the dependence of reflection on the wavelength on side A was obtained, which is shown in fig. 3. At a wavelength of 808 nm, the reflection is 0.0005063826%, that is, all incident radiation with a given wavelength will completely pass into the cavity through the cavity end mirror.

Table 1 shows the antireflection coating calculation results for side A. Here H is the coating layer with a bigger refractive index; L is the layer with a lower refractive index. To achieve the required antireflection degree at a wavelength of 808 nm, only two layers were needed – a layer of silicon oxide and titanium oxide.

 

Fig. 3. Dependence of the reflection of a cavity end mirror side A with calculated antireflection coating on the incident beam wavelength

 

Table 1

Interference coating calculation results for side A

1.51/HL/ 1

No

layer ID

Material

Refr. Indx

Opt. Thkn.

Phys. Thkn.

Monitoring Wl

1

H

TiO2

2.32

0.244

21.272

808

2

L

SiO2

1.428

1.323

187.228

808

Wavelength: 808 nm

 

For side B, it was necessary to obtain such a thin film that would transmit radiation with a wavelength of 808 nm into the cavity and reflect radiation with a laser wavelength of 1064 nm. As a result of calculation, the dependence of reflection on wavelength on side B was obtained, which is shown in fig. 4. At a wavelength of 808 nm, the reflection is 0.02409379%, that is, all incident radiation with a given wavelength will completely pass into the cavity through the cavity end mirror. At a wavelength of 1064 nm, the percentage of reflection is 99.7338%, which is permitted by the specified tolerance, that is, all incident radiation with a given wavelength will be reflected from the cavity end mirror inside the cavity.

Table 2 shows the coating calculation results for side B. To achieve the desired result, 15 layers of silicon oxide and titanium oxide were required.

 

Fig. 4. Dependence of the reflection of a cavity end mirror side B with calculated antireflection and reflection coatings on the incident beam wavelength

 

Table 2

Interference coating calculation results for side B.

1.51/(HL)^7 H/1

No

layer ID

Material

Refr. Indx

Opt. Thkn.

Phys. Thkn.

Monitoring Wl

1

H

TiO2

2.32

1.21

138.782

1064

2

L

SiO2

1.427

0.517

96.479

1064

3

H

TiO2

2.32

1.451

166.366

1064

4

L

SiO2

1.427

0.861

160.569

1064

5

H

TiO2

2.32

0.78

89.428

1064

6

L

SiO2

1.427

1.117

208.325

1064

7

H

TiO2

2.32

0.883

101.257

1064

8

L

SiO2

1.427

1.347

251.072

1064

9

H

TiO2

2.32

0.704

80.677

1064

10

L

SiO2

1.427

0.883

164.669

1064

11

H

TiO2

2.32

1.263

144.803

1064

12

L

SiO2

1.427

0.827

154.265

1064

13

H

TiO2

2.32

0.947

108.56

1064

14

L

SiO2

1.427

1.028

191.677

1064

15

H

TiO2

2.32

1.226

140.533

1064

Wavelength: 1064 nm

 

Conclusion

As a result of this work, the fundamental principles of the laser operation were presented, and the interference coating was calculated for both sides of a DPSS pulsed solid-state laser with a passive Q-switching and extracavity frequency doubling cavity end mirror. The calculated complex coatings provide the necessary fraction of radiation reflection and transmission at given wavelengths. The need for such calculations lies in the fact that in order to achieve the required percent of transmission at specific wavelengths, specific interference coatings are applied. Qualitative calculation implies the possibility of  fabricating of optical elements with a similar coating, that is, the number of layers should not be too large, and their thickness should not be too small. It is shown that to achieve the necessary radiation transmission at a wavelength of 808 nm, a two-layer coating is required – a layer of silicon oxide and titanium oxide, and for simultaneous radiation transmission at a wavelength of 808 nm and radiation reflection at a wavelength of 1064 nm, 15 layers of silicon oxide and titanium oxide are required. Thus, the calculation performed fully satisfies the requirements outlined above, proving out the fact that this coating can be fabricated in practice.

×

Об авторах

Анастасия Романовна Рымжина

Самарский университет

Автор, ответственный за переписку.
Email: nastya.rymzhina.98@mail.ru

студентка IV курса факультета электроники и приборостроения Самарского национального исследовательского университета имени академика С.П. Королева

Россия, 443086, Россия, г. Самара, Московское шоссе, д. 34

Светлана Альбертовна Авдейко

Самарский университет

Email: asa210770@mail.ru

старший преподаватель кафедры иностранных языков и русского как иностранного Самарского национального исследовательского университета имени академика С.П. Королева

Россия, 443086, Россия, г. Самара, Московское шоссе, д. 34

Константин Владимирович Черепанов

Самарский университет

Email: konstant-ch@yandex.ru

аспирант II курса факультета электроники и приборостроения Самарского национального исследовательского университета имени академика С.П. Королева

Россия, 443086, Россия, г. Самара, Московское шоссе, д. 34ра

Список литературы

  1. Townes C. H. The first laser // A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press, 2003. P. 107–112.
  2. Федоров Б. Ф. Лазеры. Основы устройства и применение. М.: ДОСААФ, 1988. 190 с.
  3. Звелто О. Принципы лазеров. М.: Мир, 1990. 560 с.
  4. Сравнение конструкций твердотельных лазеров. [Электронный ресурс] www.litografa global view … litografa.lt.index.php?id=65,319, 0,0,1,0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Вестник молодых учёных и специалистов Самарского университета, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-ShareAlike 4.0 International License.

Вестник молодых учёных и специалистов Самарского университета

Сетевое издание, журнал

ISSN 2782-2982 (Online)

Учредитель и издатель сетевого издания, журнала: федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет), Московское шоссе, 34, 443086,  Самарская область, г. Самара, Российская Федерация.

Сетевое издание зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, регистрационный номер ЭЛ № ФС 77-86495 от 29.12.2023

Выписка из реестра зарегистрированных СМИ

Устав сетевого издания

Главный редактор: Андрей Брониславович Прокофьев, доктор технических наук, доцент, заведующий кафедрой теории двигателей летательных аппаратов

2 выпуска в год

0+. Цена свободная. 

Адрес редакции: 443011, Самарская область, г. Самара, ул. Академика Павлова, д. 1, Совет молодых учёных и специалистов, каб. 513 корпуса 22 а.

Адрес для корреспонденции: 443086, Самарская область, г. Самара, Московское шоссе, 34, Самарский национальный исследовательский университет (Самарский университет), 22а корпус, каб. 513.

Тел: (846) 334-54-43

e-mail: smuissu@ssau.ru

Доменное имя: VMUIS.RU (справка о принадлежности домена)электронный адрес в сети Интернет:  https://vmuis.ru/smus.

Прежнее свидетельство – периодическое печатное издание, журнал «Вестник молодых учёных и специалистов Самарского университета», зарегистрировано Управлением Федеральной службы по надзору в сфере связи, информационных технологий и массовых коммуникаций по Самарской области, регистрационный номер серии ПИ № ТУ63-00921 от 27 декабря 2017 г.

© Самарский университет

 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах