Application of approximate Targ-Shvets methods for stagnation-point flow over a stretching / shrinking sheet in a nanofluid

Cover Page

Cite item

Full Text

Abstract

Flow about stagnation point over a stretching/shrinking sheet in a nanofluid is discussed. Liquid is water containing solid particles of copper. The laminar boundary layer is calculated using approximate methods and compared with the previously published results. Solutions of the equations were found by the Targ-Shvets method. Graphs of dependence of dimensionless tangential tension on a stretching/shrinking surface from dimensionless speed of its surface are constructed, on which comparisons with the published results are presented. The conclusions about the applicability of the approximate Targ-Shvets method to the solution of this problem are made.

Full Text

В данной работе рассматривается течение наножидкости в критической точке на растягиваемой поверхности, в котором в качестве жидкости используется вода, а в качестве твёрдых частиц – медь [1].

Большинство обычных теплоносителей, таких как вода, этиленгликоль и моторное масло, обладают ограниченными тепловыми свойствами, что, в свою очередь, может налагать ограничения на многие тепловые приложения. С другой стороны, большинство твёрдых веществ, в частности металлы, имеют гораздо более высокую теплопроводность, примерно на 1–3 порядка величины, по сравнению с жидкостями. Следовательно, можно ожидать, что жидкости, содержащие твёрдые частицы, могут значительно повысить теплопроводность.

Поток через непрерывно растягивающуюся поверхность является важной проблемой во многих технологических процессах в таких отраслях промышленности, как горячая прокатка, вытягивание проволоки, производство бумаги, выдув стекла, вытягивание пластиковых лент и производство стекловолокна. Качество конечного продукта зависит от скорости теплопередачи на растягиваемой поверхности.

 

Постановка задачи

В случае стационарного движения несжимаемой жидкости уравнения пограничного слоя [2] будут иметь вид:

ux+υy=0,                            1

uux+υuy=UdUdx+νf2uy2,          2

а граничные условия при внешнем обтекании пластины, растягивающейся или сжимаю-щейся в своей плоскости, запишутся так [1]:

u=Uw,υ=0 при y=0,uU при y.                   3

Здесь u и υ – компоненты скорости вдоль осей x и y, соответственно; νf=μfρnf – кинематический коэффициент вязкости жидкости (μf=11φ2.5  – относительная динамическая вязкость жидкости;ρnf=1φ+φρsρf  – относительная плотность наножидкости, где φ – объёмная доля наночастиц, ρf – плотность жидкости (в данном случае воды), ρs – плотность наночастиц (в данном случае меди Сu)), U=bx – скорость течения жидкости, Uw=ax – скорость растягивания/сжатия, где a и b – константы, b>0,  a>0 и a<0 отвечают растягивающейся и сжимающейся поверхностям, соответственно.

Уравнения (1), (2), удовлетворяющие граничным условиям (3), можно переписать в более удобной форме с помощью следующего преобразования:

η=bνf12y,   ψ=νfb12 x fη,     4

где η – переменная подобия, ψ – функция тока, определённая как u=ψy,   υ=ψx  и удовлетворяющая уравнению (1), fη – безразмерная функция тока.

Используя преобразование  уравнение (2) примет вид

11φ2.51φ+φρsρff'''+f f''f'2+

+1=0.                          5

Тогда граничные условия (3) запишутся следующим образом:

f0=0,  f'0=ε,     f'η1  при η.

 

Здесь ε – это параметр соотношения скоростей, ε=ab. При ε>0 – поверхность растягивается, при ε<0 – поверхность сжимается.

Используя условие плавности смыкания из граничного условия   f'η1 при η  и переходя от асимптотической теории к теории слоя конечной толщины, получим четвёртое граничное условие, необходимое для нахождения толщины слоя η:

   f''η=0.

Окончательно граничные условия запишутся:

f0=0,  f'0=ε,       

f'η=1,     f''η=0.                 6

Введём в (5) и (6) замену f'=u, тогда f=0ηudη.

Обозначим A=1φ2.51φ+φρsρf и перенесём в (5) все члены в правую часть, за исключением u''.

Тогда уравнение (5) и граничные условия (6) запишутся в следующем виде:

  u''=Au'0ηudη+u21,         7

 u0=ε,  uη=1,       u'η=0. 8

Решение задачи приближённым методом Тарга-Швеца

Простые и близкие по идее приближённые методы расчёта ламинарного пограничного слоя разработали С. М. Тарг и М. Е. Швец [3]. Эти методы не используют интегральные соотношения. Мы рассмотрим применение этих приближённых методов для решения нашей задачи.

Вычислим нулевое приближение, подставив в правую часть уравнения (7)u=0.

Имеем

u0''=0.

Решая это дифференциальное уравнение, получим нулевое приближение

u0=ε+1εηη.  

Подстановка этого нулевого приближения в уравнение (7) даёт

u''= А 12ε+ε2 2 η2 η2+εε2ηη+ε21.

Дважды интегрируя это уравнение и находя постоянные интегрирования из первого и второго граничных условий (7), получаем:

u'= А 12ε+ε2 6 η2 η3+εε22 η η2+ε2 η η+

+2424 ε+11A  η22A ε η29A ε2 η224 η,9

u=А 12ε+ε2 24 η2 η4+εε26 η η3+ε212  η2+

+2424 ε+11 A η22A ε η29A ε2 η224 ηη+

+ε.                               10

Чтобы найти η, воспользуемся четвёртым граничным условием (6). После подстановки его в (9) и преобразований получим

1 ηε η3 A η8+A ε η12+724A ε2 η=0.

Решая это уравнение, находим два корня:

 η1=26A 9+7ε,   η2=26A 9+7ε.

Значение  η1<0 не удовлетворяет условиям задачи, т.к. по определению  η>0.

Подставим найденное значение  η в уравнения (9) и (10):

u=AA576ε12 9+7ε η4ε1A 9+7ε ε126 η3+ε212η2A5761926 357ε28ε27A9+7εη+ε,

u'=A A144ε129+7ε η3ε1A 9+7ε ε46η2+ε12 η+6 5ε4ε23A 9+7ε.                                                                  

Рис. 1. Зависимость  , полученная первым способом

 

Рис. 2. Зависимость  [2]

×

About the authors

Daria Sergeyevna Andrievskaia

Samara University

Author for correspondence.
Email: andrievskaia.dariya@gmail.com

student IV course of the Institute of Space Rocket Engineering

Russian Federation, 443086, Russia, Samara, Moskovskoye Shosse, 34

Valentin Gavrilovich Shakhov

Samara University

Email: shakhov@ssau.ru

professor of the Department of Aircraft Construction and Design of the Samara University

Russian Federation, 443086, Russia, Samara, Moskovskoye Shosse, 34

References

  1. Bachok N., Ishak A., Pop I. Stagnationpoint flow over a stretching/shrinking sheet in a nanofluid // Nanoscale Research Letters 2011, Vol. 6. p. 623.
  2. Лойцянский Л. С. Ламинарный пограничный слой. М.: Физматгиз, 1962. 479 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Proceedings of young scientists and specialists of the Samara University

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Proceedings of young scientists and specialists of the Samara University

ISSN 2782-2982 (Online)

Publisher and founder of the online media, journal: Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

The online media is registered by the Federal Service for Supervision of Communications, Information Technology and Mass Communications, registration number EL No. FS 77-86495 dated December 29, 2023

Extract from the register of registered media

Regulation of the online media

Editor-in-chief: Andrey B. Prokof'yev, Doctor of Science (Engineering), associate professor,
head of the Department of Aircraft Engine Theory

2 issues a year

0+. Free price. 

Editorial address: building 22a, room 513, Soviet of Young Scientists and Specialists, 1, Academician Pavlov Street, Samara, 443011, Russian Federation.

Address for correspondence: room 513, building 22a, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Tel.: (846) 334-54-43

e-mail: smuissu@ssau.ru

Domain name: VMUIS.RU (Domain ownership certificate), Internet email address: https://vmuis.ru/smus.

The previous certificate is a printed media, the journal “Bulletin of Young Scientists and Specialists of Samara University”, registered by the Office of the Federal Service for Supervision of Communications, Information Technologies and Mass Communications in the Samara Region, registration number series PI No. TU63-00921 dated December 27, 2017.

© Samara University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies